4.8 Article

A pH-regulated dimeric bouquet in the structure of von Willebrand factor

Journal

EMBO JOURNAL
Volume 30, Issue 19, Pages 4098-4111

Publisher

WILEY
DOI: 10.1038/emboj.2011.297

Keywords

biosynthesis; endothelium; platelets; shear flow; Weibel-Palade bodies

Funding

  1. NIH [HL-48675]

Ask authors/readers for more resources

At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH of secretion, the C-terminal similar to 1350 residues of von Willebrand factor (VWF) zip up into an elongated, dimeric bouquet. Six small domains visualized here for the first time between the D4 and cystine-knot domains form a stem. The A2, A3, and D4 domains form a raceme with three pairs of opposed, large, flower-like domains. N-terminal VWF domains mediate helical tubule formation in WPBs and template N-terminal disulphide linkage between VWF dimers, to form ultralong VWF concatamers. The dimensions we measure in VWF at pH 6.2 and 7.4, and the distance between tubules in nascent WPB, suggest that dimeric bouquets are essential for correct VWF dimer incorporation into growing tubules and to prevent cross-linking between neighbouring tubules. Further insights into the structure of the domains and flexible segments in VWF provide an overall view of VWF structure important for understanding both the biogenesis of ultralong concatamers at acidic pH and flow-regulated changes in concatamer conformation in plasma at alkaline pH that trigger hemostasis. The EMBO Journal (2011) 30, 4098-4111. doi:10.1038/emboj.2011.297; Published online 19 August 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available