4.8 Article

Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis

Journal

EMBO JOURNAL
Volume 29, Issue 8, Pages 1412-1422

Publisher

WILEY
DOI: 10.1038/emboj.2010.36

Keywords

amidase; cell wall; cytokinesis; divisome; peptidoglycan

Funding

  1. Massachusetts Life Science Center
  2. Burroughs Wellcome Fund
  3. National Institutes of Health [R01 AI083365-01A1]

Ask authors/readers for more resources

During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring. The EMBO Journal (2010) 29, 1412-1422. doi: 10.1038/emboj.2010.36; Published online 18 March 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available