4.8 Article

Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis

Journal

EMBO JOURNAL
Volume 29, Issue 11, Pages 1840-1850

Publisher

WILEY
DOI: 10.1038/emboj.2010.73

Keywords

antisense RNA; bacterial sRNA; curli regulation; Hfq; transcriptional activator

Funding

  1. Swedish Science Research Council (VR)
  2. European Commission

Ask authors/readers for more resources

Escherichia coli produces proteinaceous surface structures called curli that are involved in adhesion and biofilm formation. CsgD is the transcriptional activator of curli genes. We show here that csgD expression is, in part, controlled post-transcriptionally by two redundant small RNAs (sRNAs), OmrA and OmrB. Their overexpression results in curli deficiency, in accordance with the inhibition of chromosomally encoded, FLAG-tagged CsgD. Downregulation of csgD occurs by a direct antisense interaction within the csgD 5'-UTR, far upstream of the ribosome-binding site (RBS). OmrA/B downregulate plasmidborne csgD-gfp fusions in vivo, and inhibit CsgD translation in vitro. The RNA chaperone Hfq is required for normal csgD mRNA and OmrA/B levels in the cell, and enhances sRNA-dependent inhibition of csgD translation in vitro. Translational inhibition involves two phylogenetically conserved secondary structure modules that are supported by chemical and enzymatic probing. The 5'-most element is necessary and sufficient for regulation, the one downstream comprises the RBS and affects translational efficiency. OmrA/B are two antisense RNAs that regulate a transcription factor to alter a morphotype and group behaviour. The EMBO Journal (2010) 29, 1840-1850. doi:10.1038/emboj.2010.73; Published online 20 April 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available