4.5 Article

Comparative proteomic analysis of different Toxoplasma gondii genotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry

Journal

ELECTROPHORESIS
Volume 35, Issue 4, Pages 533-545

Publisher

WILEY
DOI: 10.1002/elps.201300044

Keywords

2D DIGE; MS; Proteome; Tachyzoites; Toxoplasma gondii

Funding

  1. National Natural Science Foundation of China [31172316, 31230073]

Ask authors/readers for more resources

Toxoplasma gondii is a protozoan parasite infecting almost all warm-blooded animals and humans. There are three infective stages of T. gondii: the tachyzoites, the bradyzoites, and the oocysts. The tachyzoite is a rapidly multiplying stage and the main pathogenic factor. In North America and Europe, T. gondii is consisted of four major clonal lineages (namely Types I, II, III, and Type 12). In this study, we explored the proteomic profiles of different genotypes (Type I-RH strain, Type II-PRU strain, Type II-TgQHO strain, and ToxoDB 9-TgC7 strain) of T. gondii tachyzoites by using 2D DIGE combined with MALDI-TOF MS. Totally, 110 differentially abundant protein spots were selected. Of these, 98 spots corresponding to 56 proteins from T. gondii were successfully identified. These included surface antigen (SAG1), heat shock protein 70 (Hsp 70), disulfide isomerase, coronin, heat shock protein 60 (Hsp 60), pyruvate kinase, receptor for activated C kinase 1, and peroxiredoxin. Gene ontology enrichment analysis revealed that most of the differentially abundant proteins were involved in biological regulation, metabolic process, response to stress, binding, antioxidant activity, and transporter activity. According to the KEGG metabolic pathway maps of T. gondii, some identified proteins were involved in the glycolytic/gluconeogenesis pathway. The present study identified differentially abundant proteins among different genotypes of T. gondii and these findings have implications for the better understanding of the phenotypic differences among the examined T. gondii genotypes, which in turn may contribute to the better control of toxoplasmosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available