4.5 Article

Design and synthesis of new fluorescent probe for rapid and highly sensitive detection of proteins via electrophoretic gel stain

Journal

ELECTROPHORESIS
Volume 32, Issue 12, Pages 1403-1413

Publisher

WILEY-BLACKWELL
DOI: 10.1002/elps.201000691

Keywords

Fluorescence; MS; Native PAGE; Protein stain; Western blotting

Funding

  1. Grants-in-Aid for Scientific Research [21560814] Funding Source: KAKEN

Ask authors/readers for more resources

A new fluorescent molecular probe, 2,2'-(1E,1'E)-2,2'-(4-(dicyanomethylene)-4H-pyrane-2,6-diyl)bis(ethene-2,1-diyl)bis(sodium benzenesulfonate) salt (1), possessing the cyanopyranyl moieties and two benzene sulfonic acid groups was designed and synthesized to detect proteins in solution and for high-throughput SDS-PAGE. Compound 1 exhibited no fluorescence in the absence of proteins; however, it exhibited strong fluorescence on the addition of bovine serum albumin as a result of intramolecular charge transfer. Compared with the conventional protocols for in-gel protein staining, such as SYPRO Ruby and silver staining, 1 achieves higher sensitivity, even though it offers a simplified, higher throughput protocol. In fact, the total time required for protein staining was 60-90 min under optimum conditions much shorter than that required by the less-sensitive silver staining or SYPRO Ruby staining protocols. Moreover, 1 was successfully applied to protein identification by mass spectrometry via in-gel tryptic digestion, Western blotting, and native PAGE together with protein staining by 1, which is a modified protocol of blue native PAGE (BN-PAGE). Thus, 1 may facilitate high-sensitivity protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available