4.5 Article

Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes

Journal

ELECTROPHORESIS
Volume 32, Issue 18, Pages 2428-2435

Publisher

WILEY-BLACKWELL
DOI: 10.1002/elps.201100085

Keywords

Dielectrophoresis; Insulating structures; Microfluidics; Three-dimensional focusing

Funding

  1. National Science Council of the Republic of China [NSC-99-2923-E-194-001-MY3, NSC-99-2221-E-194-014]

Ask authors/readers for more resources

The focusing of biological and synthetic particles in microfluidic devices is a prerequisite for the construction of microstructured materials, as well as for medical applications. In the present study, a microdevice that can effectively focus particles in three dimensions using a combination of insulator-based and metal-electrode dielectrophoresis (DEP) has been designed and fabricated. The DEP force is employed to confine the particles using a negative DEP response. Four insulating microstructures, which form an X-pattern in the microchannel, were employed to distort the electric field between the insulators in a conducting solution, thereby generating regions with a high electric-field gradient. Two strips of microelectrodes on the top and bottom surfaces were placed in the middle of the microchannel and connected to an electric pole. Two sets of dual-planar electrodes connected to the opposite pole were placed at the sides of the microchannel at the top and bottom surfaces. The results of a transient simulation of tracks of polystyrene particles, which was performed using the commercial software package CFD-ACE(+) (ESI Group, France), demonstrate that the three-dimensional focusing of particles was achieved when the applied voltage was larger than 35 V at a frequency of 1 MHz. Furthermore, the focusing performance increased with the increased strength of the applied electric field and decreased inlet flow rate. Experiments on particle focusing, employing polystyrene particles 10 mm in diameter, were conducted to demonstrate the feasibility of the proposed design; the results agree with the trend predicted by numerical simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available