4.5 Article

Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis

Journal

ELECTROPHORESIS
Volume 30, Issue 9, Pages 1457-1463

Publisher

WILEY
DOI: 10.1002/elps.200800646

Keywords

Dielectrophoresis; Magnetophoresis; Microfluidics; Superparamagnetic microbeads

Funding

  1. KIST Institutional Program
  2. Korea Ministry of Knowledge Economy [MS-01-133-01]

Ask authors/readers for more resources

We present the design and fabrication of a new microfluidic device in which the dielectrophoresis and magnetophoresis phenomena were used for the separation of the superparamagnetic microbeads of different sizes. By exploiting the fact that two different particles can exhibit different dielectrophoretic force-frequency spectra, we utilize this device to perform multiplex detection from a single sample solution. We found the transition frequency range for 1, 2.8, and 4.5 mu m magnetic beads using our device. Bead-based analysis revealed that a high separation efficiency (similar to 90%) could be obtained from a single sample solution containing both 4.5 and 2.8 mu m beads. The average flow velocity of the beads was maintained at 9.8 mm/s, enabling fast analysis with a smaller amount of reagents. The magnetic field distribution on the beads and the bead flow at the channel cross section for different dielectrophoretic conditions was obtained using CFD-ACE(+) simulation. Issues relating to the fabrication and operation of the device are discussed in detail. Finally, we demonstrated the feasibility of parallel detection/trapping of different beads on the same chip. This separation approach offers the performance of multiplex analysis in lab-on-a-chip devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available