4.5 Article

Energy flows in graphene: hot carrier dynamics and cooling

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 27, Issue 16, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/27/16/164201

Keywords

light-matter interaction; electron-lattice cooling; supercollisions

Funding

  1. Center for Excitonics, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001088]
  2. Office of Naval Research [N00014-09-1-0724]
  3. NSS program (Singapore)

Ask authors/readers for more resources

Long lifetimes of hot carriers can lead to qualitatively new types of responses in materials. The magnitude and time scales for these responses reflect the mechanisms governing energy flows. We examine the microscopics of two processes which are key for energy transport, focusing on the unusual behavior arising due to graphene's unique combination of material properties. One is hot carrier generation in its photoexcitation dynamics, where hot carriers multiply through an Auger type carrier-carrier scattering cascade. The hot-carrier generation manifests itself through elevated electronic temperatures which can be accessed in a variety of ways, in particular optical conductivity measurements. Another process of high interest is electron-lattice cooling. We survey different cooling pathways and discuss the cooling bottleneck arising for the momentum-conserving electron-phonon scattering pathway. We show how this bottleneck can be relieved by higher-order collisions-supercollisions-and examine the variety of supercollision processes that can occur in graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available