4.5 Article

Structure and bonding in amorphous iron carbide thin films

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 27, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/27/4/045002

Keywords

iron carbide; thin film coatings; sputtering; synchrotron radiation; amorphous nanocomposites; TEM; RDF

Funding

  1. Swedish Research Council (VR)
  2. Linnaeus [VR 2008-6582]
  3. Swedish Foundation for Strategic Research Synergy Project FUNCASE [RMA11-0029]

Ask authors/readers for more resources

We investigate the amorphous structure, chemical bonding, and electrical properties of magnetron sputtered Fe1-xCx (0.21 <= x <= 0.72) thin films. X-ray, electron diffraction and transmission electron microscopy show that the Fe1-xCx films are amorphous nanocomposites, consisting of a two-phase domain structure with Fe-rich carbidic FeCy, and a carbon-rich matrix. Pair distribution function analysis indicates a close-range order similar to those of crystalline Fe3C carbides in all films with additional graphene-like structures at high carbon content (71.8 at% C). From x-ray photoelectron spectroscopy measurements, we find that the amorphous carbidic phase has a composition of 15-25 at% carbon that slightly increases with total carbon content. X-ray absorption spectra exhibit an increasing number of unoccupied 3d states and a decreasing number of C 2p states as a function of carbon content. These changes signify a systematic redistribution in orbital occupation due to charge-transfer effects at the domain-size-dependent carbide/matrix interfaces. The four-point probe resistivity of the Fe1-xCx films increases exponentially with carbon content from similar to 200 mu Omega cm (x = 0.21) to similar to 1200 mu Omega cm (x = 0.72), and is found to depend on the total carbon content rather than the composition of the carbide. Our findings open new possibilities for modifying the resistivity of amorphous thin film coatings based on transition metal carbides through the control of amorphous domain structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available