4.5 Article

Ultrasensitive graphene far-infrared power detectors

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 27, Issue 16, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/27/16/164203

Keywords

far-infrared; terahertz; photodetector; NEP; Johnson noise; graphene

Funding

  1. NSF [DMR-0907082]
  2. IBM Faculty Grant
  3. Yale University
  4. YINQE
  5. NSF MRSEC DMR [1119826]
  6. AFOSR-YIP [FA9550-10-1-0090]

Ask authors/readers for more resources

We describe the properties of ultrasensitive graphene photon detectors for use in the far-infrared/terahertz spectral region and present theoretical predictions for their power detection sensitivity. These predictions are based on two graphene contacting schemes with superconducting contacts: contacts with a thin insulating barrier, and direct superconducting contacts. To quantitatively assess these predictions, we perform thermal measurements of graphene at low temperatures and analyse them to extract information on electron-phonon cooling in graphene. These new results for the electron-phonon cooling channel allow reliable prediction of the noise equivalent power (NEP) that can be expected from an optimized graphene detector, using measurement of the Johnson noise emission as the thermometry method. We find that an NEP of 2 x 10(-19) WHz(-1/2) should be achievable under certain biasing conditions with an ideal device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available