4.2 Article

Superparamagnetic Poly (3-hydroxybutyrate-co-3 hydroxyvalerate) (PHBV) nanoparticles for biomedical applications

Journal

ELECTRONIC JOURNAL OF BIOTECHNOLOGY
Volume 16, Issue 5, Pages -

Publisher

UNIV CATOLICA DE VALPARAISO
DOI: 10.2225/vol16-issue5-fulltext-8

Keywords

hyperthermia; magnetic resonance image (MRI); magnetite; PHBV; polymeric nanoparticles

Funding

  1. FONDECYT [1120356, 1110252]
  2. Millennium Science Nucleus Basic and Applied Magnetism [P06-022F]
  3. Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia [FB0807]
  4. CONICYT (Chile)

Ask authors/readers for more resources

Background: The progress in material science and the recent advances in biodegradable/biocompatible polymers and magnetic iron oxide nanoparticles have led to develop innovative diagnostic and therapeutic strategies for diseases based on multifunctional nanoparticles, which include contrast medium for magnetic resonance imaging, agent for hyperthermia and nanocarriers for targeted drug delivery. The aim of this work is to synthesize and characterize superparamagnetic iron oxide (magnetite), and to encapsulate them into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles for biomedical applications. Results: The magnetite nanoparticles were confirmed by X-ray diffraction and exhibited a size of 22.3 +/- 8.8 nm measured by transmission electron microscopy (TEM). Polymeric PHBV nanoparticles loaded with magnetite (MgNPs) were analyzed using dynamic light scattering and showed a size of 258.6 +/- 35.7 nm and a negative zeta potential (-10.8 +/- 3.5 mV). The TEM examination of MgNPs exhibited a spherical core-shell structure and the magnetic measurements showed in both, non-encapsulated magnetite and MgNPs, a superparamagnetic performance. Finally, the in vitro studies about the magnetic retention of MgNPs in a segment of small intestine of rats showed an active accumulation in the region of the magnetic field. Conclusions: The results obtained make the MgNPs suitable as potential magnetic resonance imaging contrast agents, also promoting hyperthermia and even as potential nanocarriers for site-specific transport and delivery of drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available