4.6 Article

A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite

Journal

ELECTROCHIMICA ACTA
Volume 123, Issue -, Pages 219-226

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2014.01.031

Keywords

Porous silicon; Copper nanoparticles; Glucose determination; Non-enzymatic sensor

Funding

  1. Isfahan University of Technology Research Councils
  2. Center of Excellence in Sensor

Ask authors/readers for more resources

Cu/PSI (copper/porous silicon) nanocomposite powder was prepared by chemical etching of silicon (Si) powder in a HF/HNO3 solution, followed by electrodless plating of copper nanoparticles on the etched PSi powder in a solution containing CuSO4 as a metal precursor. The resulting nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and FT-IR spectroscopy. The copper nanoparticles in PSi support show the good chemical and electrochemical stability as well as electrocatalytic effect on Glc oxidation, hence the Cu/PSi nanocomposite was used to modify carbon paste electrode (CPE) to fabricate non-enzymatic Glc sensor. The electrocatalytic activity of Cu/Psi nanocomposite was investigated for Glc oxidation in alkaline and neutral solutions using cyclic voltammetry and chronoamperometry. The novel developed sensor displayed a fast amperometric response time of less than 4 s, long time stability, good signal reproducibility and two linear ranges from 1.0 to 190.0 mu mol dm(-3) and 190 mu mol dm(-3) to 2.3 mu mol dm(-3) of Glc with a detection limit of 0.2 mu mol dm(-3). The sensor exhibited no interference from common interferences such as ascorbic acid, dopamine, uric acid, fructose and citric acid. The good analytical performance, low cost and easy preparation method made this novel electrode material promising for the development of effective Glc sensor. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available