4.6 Article

Graphene quantum dots optimization of dye-sensitized solar cells

Journal

ELECTROCHIMICA ACTA
Volume 137, Issue -, Pages 634-638

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2014.06.075

Keywords

Graphene quantum dots; dye-sensitized solar cells; photoexcitation response; hot electron injection; short circuit current

Funding

  1. National Basic Research Program [2011CB933304]
  2. National Natural Science Foundation of China [J1210061]
  3. Fundamental Research Funds for the Central Universities [20102020101000036]

Ask authors/readers for more resources

Graphene quantum dots (GQDs) optimized TiO2 photoanodes and their dye-sensitized solar cells (DSSCs) were successfully demonstrated in this study for the first time. The characteristics of GQDs were confirmed by Raman and TEM measurements. Study indicated that the amount of dye-adsorption decreased firstly and then increased as the increase of the GQDs in the photoanodes, while that the J(SC), V-OC and eta of the corresponding DSSCs increased firstly and then decreased. Of all the DSSCs, the DSSC with an optimal amount of GQDs showed the best performance with a minimum dye-adsorption while the maximum J(SC) of 14.07 +/- 0.02 mA cm(-2) and eta of 6.10 +/- 0.01%, higher than those of the conventional DSSC (without GQDs) by 30.9% and 19.6%, respectively. The minimum dye-adsorption while the maximum J(SC) and eta obtained in the optimal DSSC are mainly attributed to the unique photoexcitation response of GQDs and the hot electrons injection from GQDs into TiO2. This study indicates that not only the properties of DSSCs can be improved by GQDs, but more importantly, the reduced use of dye by using GQDs is of significant importance for the low cost and environment-friendly DSSCs. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available