4.6 Article Proceedings Paper

Hydrogen Storage in Metal-Organic Frameworks: A Review

Journal

ELECTROCHIMICA ACTA
Volume 128, Issue -, Pages 368-392

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.10.190

Keywords

Hydrogen storage; Metal-organic framework; Hybrid hydrogen storage material

Ask authors/readers for more resources

Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong coordination bonds to organic ligands. They exhibit a great structural diversity and possess low weight, exceptionally high surface areas, large free volumes, and tunable pore sizes and functionalities, making them extremely attractive for a variety of applications such as hydrogen storage. For these reasons MOFs have been extensively studied. In this paper, a review of recent developments on hydrogen storage in MOFs is presented, with a focus on the effects of various factors including open metal sites, 'guest' metal ions, ligand functionalization, surface area, pore volume, pore size, and Pt or Pd metal nanoparticles, on hydrogen storage. In addition, the review examines the emerging research on MOF hybrid hydrogen storage systems, primarily in the context of employing MOFs for nanoconfinement of high temperature hydrogen storage materials. The review focuses on experimental studies. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available