4.6 Article

L-Cysteine-Assisted Synthesis of Cubic Pyrite/Nitrogen-Doped Graphene Composite as Anode Material for Lithium-ion Batteries

Journal

ELECTROCHIMICA ACTA
Volume 137, Issue -, Pages 197-205

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2014.05.156

Keywords

Pyrite; Nitrogen-doped graphene; Electrochemical Properties; Anode materials; Lithium ion batteries

Funding

  1. National Natural Science Foundation of China [J1103305]

Ask authors/readers for more resources

Transition-metal sulfides have received increasing attention as electrode materials for high-performance Lithium-ion Batteries (LIBs). However, most of them are suffering from poor cycling stability and rate capability. Herein we report a new and facile strategy for synthesizing FeS2/nitrogen-doped graphene (FeS2/N-G) composite which shows improved electrochemical performance as an anode material for LIBs. The as-prepared FeS2/N-G (1:2, molar ratio) composite exhibits reversible discharge and charge capacities of 979 and 920 mAh g(-1), respectively, with good cycling,performance and rate capability. SEM and TEM results show that the cubic FeS2 are uniformly distributed on the surface of the nitrogen-doped graphene nanosheets (N-GNS) in the composite. The superior electrochemical performance of FeS2/N-G composite as LIBs anode is attributed to their robust composite structure and the synergistic effects between cubic FeS2 and N-GNS. This synthesis approach could open up new opportunities in the design and fabrication of energy storage devices. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available