4.6 Article

Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries

Journal

ELECTROCHIMICA ACTA
Volume 103, Issue -, Pages 226-230

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.04.040

Keywords

Lithium-ion batteries; Carbon-coated silicon monoxide; Microstructural changes; Electrically conductive network; Failure mechanism

Funding

  1. Samsung SDI
  2. National Research Foundation of Korea
  3. MEST [NRF-2010-C1AAA001-2010-0029065]
  4. Korea Research Institute of Chemical Technology (KRICT)

Ask authors/readers for more resources

The capacity variation observed with a carbon-coated silicon monoxide (C-SiO) composite electrode has been explained by the microstructural changes evolved during cycling. In an initial few cycles, the Si domain in SiO is lithiated by alloying reaction, during which cracks form in the Si domain due to volume change. An increase in the contact area between Si and electrolyte solution due to the crack formation, and down-sizing of Si particles facilitate the lithiation reaction, such that the Si domain is lithiated to the most lithium-rich Li Si phase (Li15Si4). Due to an increase in the degree of lithiation, the reversible capacity steadily increases. A severe volume change that is accompanied by the full lithiation, however, leads to a serious particle crack and pulverization, and surface film deposition on the newly exposed Si surface. All these features lead to a breakdown of electrically conductive network within the electrode layer. As a result, some Si particles are electrically isolated to cause a loss in the reversible capacity. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available