4.6 Article

Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor

Journal

ELECTROCHIMICA ACTA
Volume 56, Issue 7, Pages 2947-2953

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2010.12.094

Keywords

Catalase; Amine-functionalized graphene; Gold nanoparticles; Hydrogen peroxide; Direct electrochemistry and electrocatalysis

Funding

  1. National Natural Science Foundation of China [20805040, 21002082]
  2. Program for Science & Technology Innovation Talents in Universities of Henan Province [2010HASTIT025]
  3. Excellent Youth Foundation of He'nan Scientific Committee [104100510020]

Ask authors/readers for more resources

Direct electrochemistry and electrocatalysis of catalase (Cat) was studied based on a nano-composite film consisting of amine functionalized graphene and gold nanoparticles (AuNPs) modified glassy carbon electrode. Graphene was synthesized chemically by Hummers and Offeman method and then was functionalized with amino groups via chemical modification of carboxyl groups introduced on the graphene surface. The nano-composite film showed an obvious promotion of the direct electron transfer between Cat and the underlying electrode, which attributed to the synergistic effect of graphene-NH2 and AuNPs. The resultant bioelectrode retained its biocatalytic activity and offered fast and sensitive H2O2 quantification. Under the optimized experimental conditions, hydrogen peroxide was detected in the concentration range from 0.3 to 600 mu M with a detection limit of 50 nM at S/N = 3. The biosensor exhibited some advantages, such as short time respond (2 s), high sensitivity (13.4 mu A/mM) and good reproducibility (RSD = 5.8%). (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available