4.6 Article Proceedings Paper

Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery

Journal

ELECTROCHIMICA ACTA
Volume 56, Issue 26, Pages 9549-9555

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2011.03.005

Keywords

Ordered mesoporous carbon; Sulfur; Nanocomposite; Cathode; Li-S battery

Ask authors/readers for more resources

Ordered mesoporous carbon/sulfur (OMC/S) nanocomposites with hierarchically structured sulfur loading, ranging from 50 to 75 wt%, were synthesized via a simple melt-diffusion strategy. The OMC with a BET surface area of 2102 m(2) g(-1), a pore volume of 2.0 cm(3) g(-1) and unique bimodal mesoporous (5.6/2.3 nm) structure, was prepared from a triconstituent co-assembly method. The resulting OMC/S nanocomposite material served as cathode of rechargeable lithium-sulfur (Li-S) battery. It has been tested that the novel OMC/S cathode can deliver a superior reversible capacity and cyclability. In particular, the nanocomposite with a loading of 60 wt% sulfur (OMC/S-60) presents the highest sulfur utilization ca. 70%, an excellent high rate capability ca. 6C and a good cycling stability for up to 400 full charge-discharge cycles. The exceptional electrochemical performances are exclusively attributed to the large internal surface area and high porosity of the ordered mesoporous carbon, which favorites both electron and Li-ion transportations. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available