4.6 Article

Surface characterization and direct bioelectrocatalysis of multicopper oxidases

Journal

ELECTROCHIMICA ACTA
Volume 55, Issue 24, Pages 7385-7393

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2010.07.026

Keywords

Laccase; Bilirubin oxidase; Ascorbate oxidase; Bio-cathode; Enzymatic fuel cell

Funding

  1. Bio/Nano Architectures (UNM) [MR 2D100]

Ask authors/readers for more resources

Multicopper oxidases (MCO) have been extensively studied as oxygen reduction catalysts for cathodic reactions in biofuel cells Theoretically. direct electron transfer between an enzyme and electrode offers optimal energy conversion efficiency providing that the enzyme/electrode interface can be engineered to establish efficient electrical communication. In this study, the direct bioelectrocatalysts of three MCO (Laccase from Trametes versicolor, bilirubin oxidase (BOD) from the fungi Myrothecium verrucaria and ascorbate oxidase(AOx) from Cucurbita sp.) was investigated and compared as oxygen reduction Protein film voltammetry and electrochemical characterization of the MCO electrodes showed that DET had been successfully established in all cases. Atomic force microscopy imaging and force measurements indicated that enzyme was immobilized as a monolayer on the electrode surface Evidence for three clearly separated anodic and cathodic redox events related to the Type 1 (T1) and the trinculear copper centers (T2, T3) of various MCO was observed. The redox potential of the T1 center was strongly modulated by physiological factors including pH, anaerobic and aerobic conditions and the presence of inhibitor S. (C) 2010 Elsevier Ltd All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available