4.6 Article

Carbon nanotube supported platinum-palladium nanoparticles for formic acid oxidation

Journal

ELECTROCHIMICA ACTA
Volume 55, Issue 13, Pages 4217-4221

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2010.02.062

Keywords

Fuel cell; Alloy catalyst; Palladium; Formic acid oxidation; Carbon nanotubes

Funding

  1. Michigan Technological Universality [D90925]
  2. State Key Laboratory of Fine Chemicals of Dalian University of Technology

Ask authors/readers for more resources

Pt, Pd and PtxPdy alloy nanoparticles (Pt1Pd1, Pt1Pd3, atomic ratio of Pt to Pd is 1:1.1:3, respectively) supported on carbon nanotube (CNT) with high and uniform dispersion were prepared by a modified ethylene glycol method. Transmission electron microscopy images show that small Pt and PtxPdy nanoparticles are homogeneously dispersed on the outer walls of CNT, while Pd nanoparticles have some aggregations and comparatively larger particle size. The average particle sizes of Pt/CNT, Pt1Pd1/CNT, Pt1Pd3/CNT and Pd/CNT obtained from the Pt/Pd (2 2 0) diffraction peaks in the X-ray diffraction patterns are 2.0, 2.4, 3.1 and 5.4 nm, respectively. With increasing Pd amount of the catalysts, the mass activity of formic acid oxidation reaction (FAOR) on the CNT supported catalysts increases in both cyclic voltammetry (CV) and chronoamperometry (CA) tests, although the particle size gets larger (thus, the relative surface area gets smaller). The CV study indicates a 'direct oxidation pathway' of FAOR occurred on the Pd surface, while on the Pt surface, the FAOR goes through 'COads intermediate pathway'. Pd/CNT demonstrates 7 times better FAOR mass activity than Pt/CNT (2.3 mA/mgPd vs. 0.33 mA/mgPt) at an applied potential of 0.27 V (vs. RHE) in the CA test. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available