4.6 Article

Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries

Journal

ELECTROCHIMICA ACTA
Volume 54, Issue 13, Pages 3606-3610

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2009.01.030

Keywords

Tin sulfide; Solvothermal synthesis; Carbon coating; Lithium-ion battery

Funding

  1. Division of Advanced Batteries in the NGE [10028960-2007-11]

Ask authors/readers for more resources

Carbon-coated SnS2 nanoparticles were prepared by a simple solvothermal route at low temperature. A carbon coating with a thickness of about 5 nm was deposited on nano-sized SnS2 particles to serve as the anode in lithium-ion batteries. Both the nanostructure and the morphology of the SnS2 powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The coated samples were used as active anode materials for lithium-ion batteries, and their electrochemical properties were examined by constant current charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The reversible capacity of the carbon-coated SnS2 after 50 cycles was 668 mAh/g, which was much higher than that of the uncoated SnS2 (293 mAh/g). The carbon-coated SnS2 also had a better rate capability than the uncoated SnS2 in the range of 0.008-1 C. The capacity retention of the carbon-coated SnS2 was improved due to its good conductivity and the effective buffer matrix that alleviated volume expansion during the charge-discharge process. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available