4.6 Article

Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions

Journal

ELECTROCHIMICA ACTA
Volume 54, Issue 17, Pages 4155-4163

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2009.02.058

Keywords

Aluminum alloy; Passivity; Pitting corrosion; Chloride ions; Electrochemical measurements

Funding

  1. Canada Research Chairs Program
  2. Natural Science and Engineering Research Council of Canada (NSERC)
  3. Dana Canada Corporation

Ask authors/readers for more resources

Passivity of aluminum (Al) alloy 3003 in air and in aqueous solutions without and with chloride ions was characterized by electrochemical measurements, including cyclic polarization, electrochemical impedance spectroscopy (EIS), localized EIS and potential of zero charge, Mott-Schottky analysis and secondary ion mass spectroscopy (SIMS) technique. Stability, pitting susceptibility and repassivation ability of Al alloy 3003 under various film-forming conditions were determined. Results demonstrated that passive films formed on 3003 Al alloy in air and in Na2SO4 solution without and with NaCl addition show an n-type semiconductor in nature. The passive film formed in chloride-free solution is most stable, and that formed in chloride-containing solution is most unstable, with the film formed in air in between. Pitting of Al alloy 3003 passivated both in air and in aqueous solutions is inevitable in the presence of chloride ions. There is the strongest capability for the air-passivated Al alloy 3003 to repassivate, and the weakest repassivating capability for Al alloy 3003 passivated in chloride-containing solution. The resistance of the passivated Al alloy 3003 to pitting corrosion is dependent on the competitive effects of pitting (breakdown of passive film) and repassivation (repair of passive film). According to the differences between corrosion potential and potential of zero charge, passive film formed in air has the strongest capability to adsorb chloride ions, while the film formed in chloride-containing solution the least. Chloride ions causing pitting of passivated Al alloy 3003 in air and in chloride-free solution come from the test solution, while those resulting in pitting of passivated Al alloy 3003 in chloride-containing solution mainly exist in the film during film-forming stage. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available