4.6 Article

Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

Journal

ELECTROCHIMICA ACTA
Volume 54, Issue 2, Pages 228-234

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2008.08.007

Keywords

Lithium batteries; Composite polymer electrolyte; Electrospinning; Fibrous membrane; Ceramic filler

Funding

  1. National Research Foundation of Korea [081-4-3-0352, 핵06A1303] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO3, Al2O3 or SiO2 were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO4 based on the NCPE containing BaTiO3 delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO4 cells with NCPEs containing Al2O3 and SiO2 was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO3-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available