4.2 Article

Carbon Coating of Si Thin Flakes and Negative Electrode Properties in Lithium-Ion Batteries

Journal

ELECTROCHEMISTRY
Volume 80, Issue 10, Pages 720-724

Publisher

ELECTROCHEMICAL SOC JAPAN
DOI: 10.5796/electrochemistry.80.720

Keywords

Li-Si Alloy Negative Electrode; Thin Flakes; Carbon-Coating; Irreversible Capacity

Ask authors/readers for more resources

To reduce the high irreversible capacity (Q(irr)) of Si thin flake (Si-LP) negative electrode, carbon-coated Si-LPs were prepared using citric acid as a precursor and their charge/discharge properties were investigated as negative electrodes in lithium-ion batteries. The carbon-coated powder was homogeneously coated with a thin carbon layer (8-10 and 6-8 nm in thickness for Si-LPs heat-treated at 600 and 700 degrees C, respectively, 14 wt% for each). The irreversible capacity Q(irr) was successfully reduced to about a half (ca. 1100 nnAh g(-1)) of that of the pristine Si-LP (2336 mAhg(-1)), though the cycleability was slightly deteriorated. The cycleability of Si-LP@Cs was significantly improved by the addition of 10 wt% VC in the electrolyte solution. Si-LP@C(700 degrees C) kept high discharge capacities over 2000 mAh g(-1) even after 50 cycles with a reduced Q(irr) of ca. 1300 mAh g(-1) compared with the pristine Si-LP (ca. 2450 mAh g(-1)). (C) The Electrochemical Society of Japan, All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available