4.0 Article

Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability

Journal

ELECTROCHEMICAL AND SOLID STATE LETTERS
Volume 11, Issue 5, Pages A76-A80

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.2888173

Keywords

-

Ask authors/readers for more resources

The binder's influence on the cycling stability of high-energy anodes for lithium-ion batteries is demonstrated. Varying the binder's nature strongly influences the composite electrode's performance on deep charging/discharging. If sodium-carboxymethylcellulose is used as binding agent, then a chemical bond between binder and silicon particles can be detected (attenuated total reflection-Fourier transform infrared spectroscopy). Consequently, a reaction mechanism that describes a condensation reaction between the binder and the silicon particles is verbalized. It is shown that, not necessarily the binder's physical flexibility, but its chemical interaction with the active masses is the major claim leading to long-lasting reversible lithium uptake/release. (c) 2008 The Electrochemical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available