4.5 Article

A carbon nanotube PVC based matrix modified with glutaraldehyde suitable for biosensor applications

Journal

ELECTROANALYSIS
Volume 20, Issue 6, Pages 603-610

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/elan.200704119

Keywords

multiwall carbon nanotubes; glassy carbon electrode; NADH; polymeric matrix; electrochemical sensing

Ask authors/readers for more resources

Carbon nanotubes (CNTs) are offering a great promise for developing electrochemical sensors. Distinctive properties of CNTs such as a high surface area, ability to accumulate analyte, minimization of surface fouling and electrocatalytic activity are very attractive for electrochemical sensing. The electrochemical study of a glassy carbon (GC) electrode coated with a matrix based in multiwall carbon nanotubes (MWCNTs), tetrahydrofuran (THF) mixed with poly(vinyl chloride) (PVC) and with a glutaraldehyde (GA) solution (MWCNTs-TPG/GC), for beta-Nicotinamide adenine dinucleotide (NADH) detection is discussed in this work using cyclic voltammetry (CV) and chronoamperometry. The used CNTs matrix promotes better the electron transfer of NADH minimizing the fouling effect. The obtained results show remarkable electrochemical and mechanical advantages of MWCNTs-TPG/GC electrode compared to bare glassy carbon electrode with a great promise for future amperometric biosensors applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available