4.6 Article

Defining a Simplified Yet Realistic'' Equation of State for Seawater

Journal

JOURNAL OF PHYSICAL OCEANOGRAPHY
Volume 45, Issue 10, Pages 2564-2579

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO-D-15-0080.1

Keywords

Circulation; Dynamics; Deep convection; Large-scale motions; Ocean circulation; Models and modeling; General circulation models; Ocean models; Applications; Education

Categories

Funding

  1. Bolin Centre for Climate Research
  2. Natural Environment Research Council [noc010010] Funding Source: researchfish
  3. NERC [noc010010] Funding Source: UKRI

Ask authors/readers for more resources

There is a growing realization that the nonlinear nature of the equation of state has a deep impact on the global ocean circulation; however, the understanding of the global effects of these nonlinearities remains elusive. This is partly because of the complicated formulation of the seawater equation of state making it difficult to handle in theoretical studies. In this paper, a hierarchy of polynomial equations of state of increasing complexity, optimal in a least squares sense, is presented. These different simplified equations of state are then used to simulate the ocean circulation in a global 2 degrees-resolution configuration. Comparisons between simulated ocean circulations confirm that nonlinear effects are of major importance, in particular influencing the circulation through determination of the static stability below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior. It is found that a simple polynomial equation of state, with a quadratic term in temperature (for cabbeling), a temperature-pressure product term (for thermobaricity), and a linear term in salinity, that is, only four tuning parameters, is enough to simulate a reasonably realistic global circulation. The best simulation is obtained when the simplified equation of state is forced to have an accurate thermal expansion coefficient near the freezing point, highlighting the importance of polar regions for the global stratification. It is argued that this simplified equation of state will be of great value for theoretical studies and pedagogical purposes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available