4.8 Article

First-Principles Calculations of the Energy and Width of the (2)A(u) Shape Resonance in p-Benzoquinone: A Gateway State for Electron Transfer

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 6, Issue 6, Pages 1053-1058

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.5b00207

Keywords

-

Ask authors/readers for more resources

Quinones are versatile biological electron acceptors and mobile electron carriers in redox processes. We present the first ab initio calculations of the width of the (2)A(u) shape resonance in the para-benzoquinone anion, the simplest member of the quinone family. This resonance state located at 2.5 eV above the ground state of the anion is believed to be a gateway state for electron attachment in redox processes involving quinones. We employ the equation-of-motion coupled cluster method for electron affinity augmented by a complex absorbing potential (CAP-EOM-EA-CCSD) to calculate the resonance position and width. The calculated width, 0.013 eV, is in excellent agreement with the width of the resonant peak in the photodetachment spectrum, thus supporting the assignment of the band to resonance excitation to the autodetaching (2)A(u) state. The methodological aspects of CAP-EOM-EA-CCSD calculations of resonances positions and widths in medium-sized molecules, such as basis set and CAP box size effects, are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available