4.8 Article

Photoexcited Carrier Dynamics of In2S3 Thin Films

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 6, Issue 13, Pages 2554-2561

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.5b00935

Keywords

-

Funding

  1. U.S. Department of Energy [DE-AC02-06CH11357]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

Indium sulfide (In2S3) is a promising absorber base for substitutionally doped intermediate band photovoltaics (IBPV); however, the dynamics of charge carriers traversing the electronic density of states that determine the optical and electronic response of thin films under stimuli have yet to be explored. The kinetics of photophysical processes in In2S3 grown by oxygen-free atomic layer deposition are deduced from photoconductivity, photoluminescence (PL), and transient absorption spectroscopy. We develop a map of excited-state dynamics for polycrystalline thin films including a secondary conduction band similar to 2.1 eV above the first, plus sulfur vacancy and indium interstitial defect levels resulting in long-lived (similar to 100 ns) transients. Band-edge recombination produces PL and stimulated emission, which both intensify and red-shift as deposition temperature and grain size increase. The effect of rapid conduction band electron relaxation (<30 ps) and deep defect levels on IBPV employing In2S3-based absorbers is finally considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available