4.8 Article

How do genetic correlations affect species range shifts in a changing environment?

Journal

ECOLOGY LETTERS
Volume 15, Issue 3, Pages 251-259

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1461-0248.2011.01734.x

Keywords

Adaptation; climate change; gene flow; genetic constraints; multivariate evolution; range shift; spatial heterogeneity

Categories

Funding

  1. European Commission [TRECC-2009-237228, DEFTER-PLANKTON-2009-236712]
  2. Axa Research Fund
  3. NSF [DEB-0819901]
  4. French Agence Nationale de la Recherche [ANR-09-PEXT-01102]

Ask authors/readers for more resources

Species may be able to respond to changing environments by a combination of adaptation and migration. We study how adaptation affects range shifts when it involves multiple quantitative traits evolving in response to local selection pressures and gene flow. All traits develop clines shifting in space, some of which may be in a direction opposite to univariate predictions, and the species tracks its environmental optimum with a constant lag. We provide analytical expressions for the local density and average trait values. A species can sustain faster environmental shifts, develop a wider range and greater local adaptation when spatial environmental variation is low (generating low migration load) and multitrait adaptive potential is high. These conditions are favoured when nonlinear (stabilising) selection is weak in the phenotypic direction of the change in optimum, and genetic variation is high in the phenotypic direction of the selection gradient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available