4.8 Article

Soil microbial respiration in arctic soil does not acclimate to temperature

Journal

ECOLOGY LETTERS
Volume 11, Issue 10, Pages 1092-1100

Publisher

WILEY
DOI: 10.1111/j.1461-0248.2008.01223.x

Keywords

acclimation; adaptation; arctic; carbon cycling; climate change; CO2; microbial community; respiration; soil; temperature

Categories

Funding

  1. Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS)
  2. NERC [NE/D005795/1, NE/D005833/1] Funding Source: UKRI
  3. Natural Environment Research Council [NE/D005795/1, NE/D005833/1] Funding Source: researchfish

Ask authors/readers for more resources

Warming-induced release of CO2 from the large carbon (C) stores in arctic soils could accelerate climate change. However, declines in the response of soil respiration to warming in long-term experiments suggest that microbial activity acclimates to temperature, greatly reducing the potential for enhanced C losses. As reduced respiration rates with time could be equally caused by substrate depletion, evidence for thermal acclimation remains controversial. To overcome this problem, we carried out a cooling experiment with soils from arctic Sweden. If acclimation causes the reduction in soil respiration observed after experimental warming, then it should subsequently lead to an increase in respiration rates after cooling. We demonstrate that thermal acclimation did not occur following cooling. Rather, during the 90 days after cooling, a further reduction in the soil respiration rate was observed, which was only reversed by extended re-exposure to warmer temperatures. We conclude that over the time scale of a few weeks to months, warming-induced changes in the microbial community in arctic soils will amplify the instantaneous increase in the rates of CO2 production and thus enhance C losses potentially accelerating the rate of 21st century climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available