4.5 Article

Framing Sustainability in a Telecoupled World

Journal

ECOLOGY AND SOCIETY
Volume 18, Issue 2, Pages -

Publisher

RESILIENCE ALLIANCE
DOI: 10.5751/ES-05873-180226

Keywords

agents; causes; coupled human-environment systems; coupled human and natural systems; coupled social-ecological systems; dispersal; distant interactions; effects; feedbacks; flows; globalization; investment; knowledge transfer; migration; socioeconomic and environmental interactions; species invasion; sustainability; technology transfer; teleconnection; telecoupling; trade; transnational land deals; water transfer

Funding

  1. National Science Foundation
  2. Michigan State University
  3. U.S. DOE Office of Science
  4. Michigan AgBioResearch

Ask authors/readers for more resources

Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. Although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available