4.6 Article

Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 39, Pages 22404-22414

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b07514

Keywords

-

Funding

  1. European Commission within the AMELIE Project under the Seventh Framework Programme (7th FWP) [265910]

Ask authors/readers for more resources

Herein, we present an extensive physicochemical characterization of a series of fluorinated and nonfluorinated carbamates and their application as electrolyte solvents comprising lithium trifluoromethanesulfonyl imide (LiTFSI) as conducting salt. In a second step, these electrolyte compositions were characterized with respect to their ionic conductivity, salt dissociation, and electrochemical stability toward oxidation. In a third step, selected fluorinated electrolytes were studied concerning their ability to enable the utilization of LiTFSI as a conducting salt in the presence of an aluminum current collector by forming a protective aluminum fluoride surface layer, thus preventing the continuous anodic aluminum dissolution, i.e., aluminum corrosion. Finally, their electrochemical performance in combination with a state-of-the-art lithium-ion cathode material, Li(Ni1/3Mn1/3Co1/3)O-2 (NMC), was investigated. It is shown that higher fluorinated carbamates reveal a very stable cycling performance of such cathodes due to their ability to form a sufficiently thick, i.e., protective, aluminum fluoride layer on the surface of the aluminum current collector. These findings confirm their suitability as electrolyte solvents in combination with LiTFSI as a conducting salt, enabling the successful replacement of toxic and unstable LiPF6 for the development of intrinsically safer lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available