4.7 Article

Phylogenetic signal in predator-prey body-size relationships

Journal

ECOLOGY
Volume 92, Issue 12, Pages 2183-2189

Publisher

WILEY-BLACKWELL
DOI: 10.1890/10-2234.1

Keywords

allometry; body mass; body-size ratio; food webs; Grafen's rho; metabolic theory of food-web ecology; Pagel's lambda; predation; trophic interactions

Categories

Funding

  1. Swiss National Science Foundation [3100A0-113843]
  2. National Centre of Competence in Research Plant Survival

Ask authors/readers for more resources

Body mass is a fundamental characteristic that affects metabolism, life history, and population abundance and frequently sets bounds on who eats whom in food webs. Based on a collection of topological food webs, Ulrich Brose and colleagues presented a general relationship between the body mass of predators and their prey and analyzed how mean predator-prey body-mass ratios differed among habitats and predator metabolic categories. Here we show that the general body-mass relationship conceals significant variation associated with both predator and prey phylogeny. Major-axis regressions between the log body mass of predators and prey differed among taxonomic groups. The global pattern for Kingdom Animalia had slope >1, but phyla and classes varied, and several had slopes significantly <1. The predator-prey body-mass ratio can therefore decrease or increase with increasing body mass, depending on the taxon considered. We also found a significant phylogenetic signal in analyses of prey body-mass range for predators and predator body-mass range for prey, with stronger signal in the former. Besides providing insights into how characteristics of trophic interactions evolve, our results emphasize the need to integrate phylogeny to improve models of community structure and dynamics or to achieve a metabolic theory of food-web ecology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available