4.7 Article

Increased plant biomass in a High Arctic heath community from 1981 to 2008

Journal

ECOLOGY
Volume 90, Issue 10, Pages 2657-2663

Publisher

WILEY
DOI: 10.1890/09-0102.1

Keywords

climate change; International Tundra Experiment; ITEX; primary production; tundra; warming

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. ArcticNet
  3. Government of Canada International Polar Year Program
  4. Northern Scientific Training Program of Indian and Northern Affairs Canada
  5. Association of Canadian Universities for Northern Studies, Eureka! Canada
  6. Garfield Weston Foundation
  7. Polar Continental Shelf Project
  8. Royal Canadian Mounted Police

Ask authors/readers for more resources

The Canadian High Arctic has been warming for several decades. Over this period, tundra plant communities have been influenced by regional climate change, as well as other disturbances. At a site on Ellesmere Island, Nunavut, Canada, we measured biomass and composition changes in a heath community over 13 years using a point-intercept method in permanent plots (1995-2007) and over 27 years using a biomass harvest comparison (1981 2008). Results from both methods indicate that the community became more productive over time, suggesting that this ecosystem is currently in transition. Bryophyte and evergreen shrub abundances increased, while deciduous shrub, forb, graminoid, and lichen cover did not change. Species diversity also remained unchanged. Because of the greater evergreen shrub cover, canopy height increased. From 1995 to 2007, mean annual temperature and growing season length increased at the site. Maximum thaw depth increased, while soil water content did not change. We attribute the increased productivity of this community to regional warming over the past 30-50 years. This study provides the first plot-based evidence for the recent pan-Arctic increase in tundra productivity detected by satellite-based remote-sensing and repeat-photography studies. These types of ground-level observations are critical tools for detecting and projecting long-term community-level responses to warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available