4.5 Article

Incorporating low-resolution historic species location data decreases performance of distribution models

Journal

ECOLOGICAL MODELLING
Volume 222, Issue 18, Pages 3444-3448

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ecolmodel.2011.06.015

Keywords

Species distribution models; AUC; Maxent; Birds; Australian tropical savannas; Environmental covariates

Categories

Funding

  1. CSIRO

Ask authors/readers for more resources

Developing robust species distribution models is important as model outputs are increasingly being incorporated into conservation policy and management decisions. A largely overlooked component of model assessment and refinement is whether to include historic species occurrence data in distribution models to increase the data sample size. Data of different temporal provenance often differ in spatial accuracy and precision. We test the effect of inclusion of historic coarse-resolution occurrence data on distribution model outputs for 187 species of birds in Australian tropical savannas. Models using only recent (after 1990), fine-resolution data had significantly higher model performance scores measured with area under the receiver operating characteristic curve (AUC) than models incorporating both fine- and coarse-resolution data. The drop in AUC score is positively correlated with the total area predicted to be suitable for the species (R(2)=0.163-0.187, depending on the environmental predictors in the model), as coarser data generally leads to greater predicted areas. The remaining unexplained variation is likely to be due to the covariate errors resulting from resolution mismatch between species records and environmental predictors. We conclude that decisions regarding data use in species distribution models must be conscious of the variation in predictions that mixed-scale datasets might cause. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available