4.6 Article

Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 9, Pages 4848-4855

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp511783c

Keywords

-

Funding

  1. INSPIRE (Integrated Nanoscience Platform for Ireland)
  2. INSPIRE

Ask authors/readers for more resources

We have used pulsed-laser deposition, following a specific sequence of heating and cooling phases, to grow ZnO nanorods on ZnO buffer/Si(100) substrates, in a 600 mT oxygen ambient, without catalyst. In these conditions, the nanorods preferentially self-organize in the form of vertically aligned, core/shell structures. X-ray diffraction analyses, obtained from 2 theta-omega and pole figure scans, shows a crystalline (wurtzite) ZnO deposit with uniform c-axis orientation normal to the substrate. Field emission scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, and selected area electron diffraction studies revealed that the nanorods have a crystalline core and an amorphous shell. The low-temperature (13 K) photoluminescence featured a strong I-6 (3.36 eV) line emission, structured green band emission, and a hitherto unreported broad emission at 3.331 eV. Further studies on the 3.331 eV band showed the involvement of deeply bound excitonic constituents in a single electron-hole recombination. The body of structural data suggests that the 3.331 eV emission can be linked to the range of defects associated with the unique crystalline ZnO/amorphous ZnO core/shell structure of the nanorods. The relevance of the work is discussed in the context of the current production methods of core/shell nanorods and their domains of application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available