4.6 Article

Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states

Journal

ECOLOGICAL ENGINEERING
Volume 70, Issue -, Pages 477-482

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ecoleng.2014.06.011

Keywords

Idiosomic Si pool; Amorphous silica; Terrestrial ecosystem development; Artificial catchment; Si fractions; Biosilicification

Funding

  1. Brandenburg University of Technology Cottbus (BTU)
  2. Ministry of Science, Research and Culture (MWFK) of the State of Brandenburg
  3. Deutsche Forschungsgemeinschaft (DFG, Bonn)
  4. Brandenburg Ministry of Science, Research and Culture (MWFK, Potsdam)
  5. DFG project Spatiotemporal dynamics of biogenic Si pools in initial soils and their relevance for desilication [SO 302/7-1]

Ask authors/readers for more resources

The size and dynamics of biogenic silicon (BSi) pools influence silicon (Si) fluxes from terrestrial to aquatic ecosystems. The research focus up to now was on the role of plants in Si cycling. In recent studies on old forests annual biosilicification rates of idiosomic testate amoebae (i.e. TA producing self-secreted silica shells) were shown to be of the order of Si uptake by trees. However, no comparable data exist for initial ecosystems. We analyzed the protozoic BSi pool (idiosomic TA), corresponding annual biosilicification rates and readily available and amorphous Si fractions along a 10-year chronosequence in a post-mining landscape in Brandenburg, Germany. Idiosomic Si pools ranged from 3 to 680 g Si ha(-1) and were about 3-4 times higher at vegetated compared to uncovered spots. They increased significantly with age and were related to temporal development of soil chemical properties. The calculation of annual biosilicification resulted in maxima between 2 and 16 kg Si ha(-1) with rates always higher at vegetated spots. Our results showed that the BSi pool of idiosomic TA is built up rapidly during the initial phases of ecosystem development and is strongly linked to plant growth. Furthermore, our findings highlight the importance of TA for Si cycling in young artificial ecosystems. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available