4.6 Article

Deep and Shallow TiO2 Gap States on Cleaved Anatase Single Crystal (101) Surfaces, Nanocrystalline Anatase Films, and ALD Titania Ante and Post Annealing

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 18, Pages 9890-9898

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b01264

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [RI1551/4-1, MA 21041/2-1]
  2. German Ministry for Science and Education BMBF [05K-SIRD1/0]
  3. BESSY beam time [O5ES3XBA/5]
  4. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG03-96ER14625]

Ask authors/readers for more resources

Using photoelectron spectroscopy (PES), deep (around 1.2 eV below Fermi level) and shallow (around 0.2 eV below Fermi level) gap states are investigated in differently prepared TiO2 samples: In situ cleaved single anatase crystal TiO2 (101) surface, sintered slurry of nanocrystalline anatase, amorphous atomic layer deposited (ALD) titania, and nanocrystalline anatase transformed by annealing from ALD titania. Deep gap states are generally attributed to under-coordinated Ti atoms due to oxygen defects. The origin of shallow gap states is unclear. PES on in situ cleaved anatase TiO2 (101) surfaces show in part no or weak emission from deep, but always weak emission from shallow gap states. Amorphous ALD titania initially is free of gap states, but deep gap states are easily induced by exposure to synchrotron radiation, while shallow gap states do not form. Exposure to synchrotron radiation also induced deep gap states in in situ cleaved single crystal (101) surfaces and in the nanoporous anatase films, whereas emission from shallow gap states stays constant. Amorphous ALD films transform to anatase nanocrystals by annealing as shown by XRD and AFM and show deep and shallow gap state emissions similar to the nanoporous anatase films prepared by sintering spin coated anatase slurry. Atomic force microscopy (AFM) reveals the presence of terraces on the cleaved (101) surfaces. The comparison of the data collected on the differently prepared anatase and amorphous titania samples suggest assigning shallow gap states to under-coordinated Ti atoms located at edge sites. Conformal amorphous films that show no edges in AFM, accordingly have no shallow gap states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available