4.6 Article

Work Function Measurement of Silicon Germanium Heterostructures Combining Kelvin Force Microscopy and X-ray Photoelectron Emission Microscopy

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 47, Pages 26776-26782

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b09278

Keywords

-

Funding

  1. French Recherche Technologique de Base Program

Ask authors/readers for more resources

Work function in Si1-xGex heterostructures with Ge content in the 6% to 49% range was studied with high energy resolution by combining Kelvin force microscopy and X-ray photoelectron emission microscopy. Although the two methods are based on distinct physical mechanisms, we show that both techniques give the same work function differences between each Si1-xGex layer, as small as 20 meV. To detect such small work function differences, we put in evidence the necessity of preparing the Si1-xGex sample surface with polishing, HF etching and Ar+ sputtering. Such surface preparation allows, in principle, to reduce the deleterious influence of surface states, coming for instance from carbon atoms or native oxide, on quantitative work function extraction. We show in this paper that even after such a sample surface preparation, a strong band bending can be present, which causes a contrast inversion on the surface of the material and yields an artificially lower surface work function with respect to theoretical values. By using density functional theory simulations, we demonstrate that such inversion is likely due to residual carbon present on the surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available