4.6 Article

A Mathematical Formulation and Solution of the CoPhMoRe Inverse Problem for Helically Wrapping Polymer Corona Phases on Cylindrical Substrates

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 24, Pages 13876-13886

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b01705

Keywords

-

Funding

  1. U.S. Army Research Laboratory
  2. U.S. Army Research Office through the Institute for Soldier Nanotechnologies [W911NF-13-D-0001]
  3. National Science Foundation [1213622]
  4. Samsung scholarship
  5. Deutsche Forschungsgemeinschaft (DFG)
  6. Juvenile Diabetes Research Foundation
  7. Division Of Chemistry
  8. Direct For Mathematical & Physical Scien [1213622] Funding Source: National Science Foundation

Ask authors/readers for more resources

Corona phase molecular recognition (CoPhMoRe) is a new technique that generates a nanoparticle-coupled polymer phase, capable of recognizing a specific molecule with high affinity and selectivity. CoPhMoRe has been successfully demonstrated using polymer wrapped single walled carbon nanotubes, resulting in molecular recognition complexes, to date, for dopamine, estradiol, riboflavin, and L-thyroxine, utilizing combinatorial library screening. A rational alternative design to this empirical library screening is to solve the mathematical formulation that we introduce as the CoPhMoRe inverse problem. This inverse problem seeks a linear function representing the position of monomers or functional groups along a polymer backbone that results in a 3-dimensional structure capable of recognizing a specific molecule when mapped to a nanoparticle surface. The potential solution space for such an inverse problem is infinite in general, but for the specific constraint of a helically wrapping polymer, mapped to a cylindrical nanoparticle, we show in this work that two types of inverse problems are exactly solvable. In one case, the polymer pitch and composition can be designed to allow for the specific binding of a small molecule analyte in the occluded space on the nanotube surface. In the other, a larger macromolecule can interact with a deformed helix, which partially conforms to it. A simplified, coarse-grained molecular model of a helically wrapping polymer demonstrates the inhomogeneous binding potential formed by a wrapping with a given pitch. Calculating the potential maps for various pitch values illustrates that there is an optimal pitch that enables the selective and specific binding of the target analyte. An additional coarse-grained model of a helical wrapping by a polymer consisting of alternating hydrophobic hydrophilic segments demonstrates the resulting deformed helix corona around the nanotube, which forms accessible binding pockets between the hydrophilic loops. While these are the idealized forms of actual CoPhMoRe phases, the formation and solution of such inverse problems may serve to reduce the dimensionality of library screening for CoPhMoRe discoveries, as well as provide a theoretical basis for understanding certain types of CoPhMoRe recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available