4.7 Article

When can efforts to control nuisance and invasive species backfire?

Journal

ECOLOGICAL APPLICATIONS
Volume 19, Issue 6, Pages 1585-1595

Publisher

ECOLOGICAL SOC AMER
DOI: 10.1890/08-1467.1

Keywords

density dependence; fecundity; instability; invasive species control; harvest; nuisance species; overcompensation; population model; removal study; stage-structured model; survivorship

Funding

  1. U.S. Department of Defense [CS 1542]

Ask authors/readers for more resources

Population control through harvest has the potential to reduce the abundance of nuisance and invasive species. However, demographic structure and density-dependent processes can confound removal efforts and lead to undesirable consequences, such as overcompensation (an increase in abundance in response to harvest) and instability (population cycling or chaos). Recent empirical studies have demonstrated the potential for increased mortality (such as that caused by harvest) to lead to overcompensation and instability in plant, insect, and fish populations. We developed a general population model with juvenile and adult stages to help determine the conditions under which control harvest efforts can produce unintended outcomes. Analytical and simulation analyses of the model demonstrated that the potential for overcompensation as a result of harvest was significant for species with high fecundity, even when annual stage-specific survivorship values were fairly low. Population instability as a result of harvest occurred less frequently and was only possible with harvest strategies that targeted adults when both fecundity and adult survivorship were high. We considered these results in conjunction with current literature on nuisance and invasive species to propose general guidelines for assessing the risks associated with control harvest based on life history characteristics of target populations. Our results suggest that species with high per capita fecundity (over discrete breeding periods), short juvenile stages, and fairly constant survivorship rates are most likely to respond undesirably to harvest. It is difficult to determine the extent to which overcompensation and instability could occur during real-world removal efforts, and more empirical removal studies should be undertaken to evaluate population-level responses to control harvests. Nevertheless, our results identify key issues that have been seldom acknowledged and are potentially generic across taxa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available