4.6 Article

Electronic, Conjugation, and Confinement Effects on Structure, Redox, and Catalytic Behavior of Oxido-Vanadium(IV) and -(V) Chiral Schiff Base Complexes

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 52, Pages 28854-28870

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b07559

Keywords

-

Funding

  1. Science & Engineering Research Board (SERB), Department of Science and Technology (DST), India [SB/EMEQ-463/2014]

Ask authors/readers for more resources

Change in oxophilicity, redox, and catalytic behavior with the modification of ligand system was observed for four oxido-vanadium Schiff base complexes. Mononuclear V(IV) complexes were obtained with methyl-substituted Schiff base ligand and one having higher conjugation. Electronic and conjugation effects reduce the oxophilicity of vanadium and led to mononuclear (LVIV=O, L = Schiff base ligand) species. However, ft-oxido bridged dinudear [O=(VOL)-O-v](2) complexes were formed with Schiff base ligands without such electronic effect under identical condition. Such structural variation also changed the electronic and redox properties of the metal complexes and brought about substantial differences in the catalytic activities of the vanadium Schiff base complexes. Confinement effect imparted by the zeolite-Y framework on the metal complexes synthesized inside the cavity by the ship in a bottle synthesis method was also found to alter the catalytic behavior of the metal complexes. All of the mononuclear and pi-oxido bridged dinudear vanadium Schiff base complexes were found to give moderate to high enantioselectivity in epoxidation of styrene and oxidative coupling of 2-naphthol. Zeolite-Y encapsulated complexes however were found to show better catalytic activity than the mononuclear homogeneous catalyst but less than the dinudear species. Catalytic activities of the complexes were found to depend on rate of oxygen flow, temperature, solvent, and the amount of catalyst. Change in redox potentials due to electronic, conjugation, and confinement effect highly influenced the catalytic behavior of the metal complexes. The lower was the oxidation potential, the higher was the catalytic activity. The best results for epoxidation of styrene were observed at -15 degrees C, while a maximum amount of BINOL was achieved at 0 degrees C. All of the chiral catalysts were found to be more effective in epoxidation of styrene. As compared to the homogeneous chiral catalyst, zeolite-Y embedded chiral catalysts were found to be advantageous in terms of recyclability, easy separation, and in some cases higher enantioselectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available