4.6 Article

Molecular and Supramolecular Parameters Dictating the Thermoelectric Performance of Conducting Polymers: A Case Study Using Poly(3-alkylthiophene)s

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 16, Pages 8472-8479

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b00135

Keywords

-

Funding

  1. Hungarian Academy of Sciences through its Momentum Excellence Grant

Ask authors/readers for more resources

In this study, we investigated the impact of molecular and supramolecular structure of conducting polymers (CPs) on their thermoelectric properties. As a model system, poly(3-alkylthiophene)s (P3ATs) with different side-chain lengths were prepared through oxidative chemical polymerization and were recrystallized to a well-ordered lamellar structure, resulting in one-dimensional self-assembled nanofibers (evidenced by transmission electron microscopy, X-ray diffraction, and UV-vis spectroscopic measurements). Thermoelectric characterization was performed at different doping levels (precisely tuned by doping in the redox reaction with Ag+ and Fe3+ cations), and the highly doped samples exhibited the best performance for all studied polymers. By varying the length of the alkyl side chain, the supramolecular structure and consequently the electronic properties were varied. The highest electrical conductivity was measured for poly(3-butylthiophene), rooted in its densely packed structure. The established structureproperty relationships, concerning the monotonous decrease of the electrical conductivity with the alkyl side chain length, highlight the importance of the supramolecular structure (interchain distance in this case). These findings may contribute to the rational design of organic thermoelectric materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available