4.4 Article

Relating streamflow characteristics to specialized insectivores in the Tennessee River Valley: a regional approach

Journal

ECOHYDROLOGY
Volume 1, Issue 4, Pages 394-407

Publisher

WILEY
DOI: 10.1002/eco.32

Keywords

Tennessee River; insectivorous fish; constancy; frequency of moderate flooding; rate of streamflow recession; quantile regression; streamflow regime; ecological flow

Ask authors/readers for more resources

Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance). and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was computed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession call strand fish in pools and other areas that are disconnected front flowing water and remove invertebrates as food sources that were suspended during high-streamflow events. Published in 2008 by John Wiley & Sons. Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available