4.5 Article

An NGA model for the average horizontal component of peak ground motion and response spectra

Journal

EARTHQUAKE SPECTRA
Volume 24, Issue 1, Pages 173-215

Publisher

EARTHQUAKE ENGINEERING RESEARCH INST
DOI: 10.1193/1.2894832

Keywords

-

Funding

  1. Directorate For Geosciences
  2. Division Of Earth Sciences [1600087] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a model for estimating horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The model provides predictive relationships for the orientation-independent average horizontal component of ground motions. Relationships are provided for peak acceleration, peak velocity, and 5-percent damped pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds. The model represents an update of the relationships developed by Sadigh (1997) and incorporates improved magnitude and distance scaling forms as well as hanging-wall effects. Site effects are represented by smooth functions of average shear wave velocity of the upper 30 m (V-S30) and sediment depth. The new model predicts median ground motion that is similar to Sadigh (1997) at short spectral period, but lower ground motions at longer periods. The new model produces slightly lower ground motions in the distance range of 10 to 50 km and larger ground motions at larger distances. The aleatory variability in ground motion amplitude was found to depend upon earthquake magnitude and on the degree of nonlinear soil response, For large magnitude earthquakes, the aleatory variability is larger than found by Sadigh (1997).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available