4.5 Article

Delta size and plant patchiness as controls on channel network organization in experimental deltas

Journal

EARTH SURFACE PROCESSES AND LANDFORMS
Volume 44, Issue 1, Pages 259-272

Publisher

WILEY
DOI: 10.1002/esp.4492

Keywords

delta; physical experiments; vegetation; distributary network; plant patchiness

Funding

  1. NSF EAR [1324335]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [1324335] Funding Source: National Science Foundation

Ask authors/readers for more resources

Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to investigate: (1) the effects of plants on delta growth and channel network formation; and (2) the timescales controlling delta evolution in the presence of plants. Experiments were conducted with fluctuating discharge (i.e. flood and base flow periods) and variable seeding densities. We found that when deltas were small, channels had no memory across flood cycles, as floods could completely fill the incised channel network. When deltas were large, the larger channel volume could remain underfilled to keep channel memory. Plant patches also helped to increase the number of channels and make a more distributive network. Patchiness increased over time to continually aid in bifurcation, but as vegetation cover and patch sizes increased, patches began to merge. Larger patches blocked the flow to enhance topset deposition and channel filling, even for the case of large deltas with a high channel volume. We conclude that both plant patchiness and delta size affect the development of the channel network, and we hypothesize that their influences are manifested through two competing timescales. The first timescale, T-v, defines the time when the delta is large enough for channels to have memory (i.e. remain underfilled), and the second, T-p, defines the time when vegetation patches merge, amplifying deposition and blocking channels. When run time is between these two timescales, the delta can develop a persistent distributary network of channels aided by bifurcation around plant patches, but once T-p is reached, the channel network can again be destroyed by vegetation. (c) 2018 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available