4.5 Article

The Electronic Structure of Amorphous Carbon Nanodots

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 119, Issue 24, Pages 7258-7265

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp510620j

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft as part of the Excellence Cluster Engineering of Advanced Materials
  2. Deutsche Forschungsgemeinschaft as part of Collaborative Research Centre [SFB 953]
  3. Bayerische Staatsregierung as part of the Solar Technologies go Hybrid initiative
  4. Beilstein Foundation Scholarship
  5. Universitat Bayern e.V.

Ask authors/readers for more resources

We have studied hydrogen-passivated amorphous carbon nanostructures with semiempirical molecular orbital theory in order to provide an understanding of the factors that affect their electronic properties. Amorphous structures were first constructed using periodic calculations in a melt/quench protocol. Pure periodic amorphous carbon structures and their counterparts doped with nitrogen and/or oxygen feature large electronic band gaps. Surprisingly, descriptors such as the elemental composition and the number of sp(3)-atoms only influence the electronic structure weakly. Instead, the exact topology of the sp(2)-network in terms of effective conjugation defines the band gap. Amorphous carbon nanodots of different structures and sizes were cut out of the periodic structures. Our calculations predict the occurrence of localized electronic surface states, which give rise to interesting effects such as amphoteric reactivity and predicted optical band gaps in the near-UV/visible range. Optical and electronic gaps display a dependence on particle size similar to that of inorganic colloidal quantum dots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available