4.4 Article Proceedings Paper

Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes

Journal

EARTH PLANETS AND SPACE
Volume 61, Issue 4, Pages 479-491

Publisher

SPRINGER HEIDELBERG
DOI: 10.1186/BF03353165

Keywords

Gravity wave; airglow image; mesopause region; thermosphere; ionosphere; MSTID

Ask authors/readers for more resources

We review measurements of nighttime atmospheric/ionospheric wave in the upper atmosphere in Japan. Indonesia. and Australia. using all-sky airglow imagers of optical mesosphere thermosphere imagers (OMTIs). The imagers observe two-dimensional patterns of airglow emissions from oxygen (wavelength: 557.7 nm) and hydorxyl (OH) (near-infrared band) in the mesopause region (80-100 km) and from oxygen (630.0 nm) in the thermosphere/ionosphere (200-300 km). Several statistical studies were done to investigate propagation characteristics of small-scale (less than 100 km) gravity waves in the mesopause region and medium-scale traveling ionospheric disturbances (MSTIDs. similar to 100-1,000 km) in the thermosphere/ionosphere. Clear seasonal variations of occurrence and propagation directions were reported for these waves. The propagation directions in the mesopause region are controlled by wind filtering, ducting processes and relative location to the wave sources in the troposphere. On the other hand, systematic equatorward and westward motions were observed for all seasons for nighttime MSTIDs in the midlatitude ionosphere with geomagnetic conjugacy between the northern and Southern hemispheres. Ionospheric instabilities may play important role for the generation and propagation of these MSTIDs. We also give an example of simultaneous observation of quasi-periodic southward-moving waves in the mesopause and in the thermosphere at the geographic equator, From these results, we discuss mean wind acceleration by mesospheric gravity waves and penetration of gravity waves from the mesosphere to the thermosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available