4.7 Article

The evolution of Hadean-Eoarchaean geodynamics

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 406, Issue -, Pages 49-58

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2014.08.034

Keywords

Hadean geodynamics; mantle convection; isotopic evolution

Funding

  1. ARC [FT100100717, DP110104145]
  2. CCFS ARC National Key Centre (CCFS Pub) [488]
  3. F.R.S.-FNRS and the European Research Council (ERC StG) [336718]
  4. European Research Council (ERC) [336718] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Geodynamic modelling of Hadean/Eoarchaean tectonics typically requires higher rates of internal heat production, and higher mantle temperatures, in models that possess temperature-dependent viscosity and a yield criterion. In such models under Hadean conditions, for a wide range of geodynamic configurations and modelling approaches, subduction has a propensity to fail. This has led to the suggestion that the predominant tectonic regime in the Hadean was stagnant-lid convection, with intermittent recycling events. Various lines of evidence support this suggestion, from i) the long mixing time of mantle isotopic anomalies or compositional heterogeneities, such as Nd-142, W-182 and platinum group elements, to ii) the long residence time of the Hadean protolith to the Jack Hills zircons, and iii) thermal evolution models, which typically require lower heat flux in the past to avoid the Archaean thermal catastrophe. The framework provided by stagnant lid, or episodic overturn, convection, iv) provides an explanation for the formation of early Archaean TTGs and greenstones, and v) explains the interleaving arc-plume sequence observed in many Archaean terranes, suggesting subduction initiation events may have been common, increasing their preservation potential. Implications include a low magnetic field strength in the Hadean, which is consistent with emerging paleointensity data from these times. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available